
工学部

School of Engineering

詳しいカリキュラムはこちらから▶

工学部では、工学全体とつながりのある幅広 い教養と深い専門的知識を修得し、それらを諸課 題に応用できる問題解決力や豊かな創造力を持 ち、自然と共生しながら地域社会や国際社会の 持続的発展に貢献できる、倫理観・責任感を有し たリーダー資質を持つ技術者・研究者の養成を 目的としています。

工学部工学科には、電気電子工学コース、知能

情報工学コース、機械工学コース、生命工学コー ス、応用化学コースが備わり、それぞれの分野に おいて特色ある教育と研究を行っています。

また、各コースの専門教育の他に「社会中核 人材育成プログラム」を通じて、社会のニーズに 応じた教育機会を提供するとともに、学生の「学 びたい」気持ちに広く応えるカリキュラムを提供 しています。

学部長からのメッセージ

"ものづくり"のための "ひとづくり"を工学部で

る学問ですが、"ものづくり"の学問とも言われます。 に工学である "ものづくり" が寄与しています。しか しながら社会に貢献できる"ものづくり"を実践する ためには、基礎となる原理の理解や幅広い知識、独 創力や倫理観、議論や説明に必要なコミュニケーショ

ン能力、これら全てをでき上がる"もの"に注ぎ込む できる技術者や研究者になるためには、まず"ひとづ くり"から始めなければなりません。皆さんは将来社 会を支える中核人材になるために、身に付けた知識 や技術を使って新しい課題を解決する体験を積んで ください。そして、社会で直面する様々な課題に立 ち向かう自信を付けて将来に向けて飛び立って行っ てください。工学部教職員一同、皆さんを心から応 援し、一緒に"ひとづくり"に日々精進していきます。

工学部長 會澤 宣一

工学科

電気電子工学コース

社会の基盤技術、電気電子工学

電気を作る物から送る物、使う物に至るまで、電 気・電子・情報・通信・制御に関する幅広い教育 研究を行っています。

知能情報工学コース

高度情報化社会の主役となる技術者・研究者を育 成します。実験・実習に十分な時間が充てられてお り、情報および関連分野を有機的に修得できます。

機械工学コース

ものづくり能力を育むカリキュラム

機械工学における専門知識の修得に加え、創造 力、課題発見・解決力等の社会に貢献できる実践 的なものづくり能力を育成します。

生命工学コース

バイオと工学の融合で 健康社会を築く

生命体の仕組みと巧みさ に学び、人々の健康や生活 に役立つものづくりに貢献 する人材を育成します。

応用化学コース

物質の分子レベルでの 理解と機能の発現

化学の知識を駆使して環 境調和型社会で活躍でき る [ものづくり] のリーダー の育成を目指しています。

2年

20

このような人を求めています

- 高等学校で修得する教科・科目を诵じて、大学で教養 を身に付けるために必要な基礎学力を有している。
- 工学に関する専門的知識を応用することに関心がある。 ・工学的専門知識を駆使して、社会的な諸問題を解決
- する意欲がある。 倫理観や使命感を持って、社会に貢献できる。
- ●入学者受入れの方針(アドミッション・ポリシー)より ※各ポリシーの全文は、本学ウェブサイトに掲載しています。

このような教育を行います

教養教育科目、専門教育科目の学修を体 系的に編成し、修得した基礎的能力を基に、 自主性、創造性及びプレゼンテーション能 力を身に付け、幅広い教養と深い専門的知 識を諸課題に応用できるよう、卒業研究指 導を行います。

● 教育課程編成・実施の方針(カリキュラム・ポリシー)より

このような人を育てます

幅広い教養と深い専門的知識を修得し、 卒業研究などを通じて諸課題に応用でき る問題解決力や豊かな創造力とコミュニ ケーション能力を持ち、自然と共生しなが ら地域社会や国際社会の持続的発展に貢 献できる、倫理観・責任感を身に付けた者 に学士(工学)の学位を授与します。

●卒業認定・学位授与の方針(ディプロマ・ポリシー)より

学修の流れ

工学部への入学後、1年次は、教養教育に 加え、工学の基礎となる科目を学び、2年次 から各コースの専門分野について講義、実験、 実習を通じて学習していきます。4年次には それぞれの研究室に所属し、研究を行い卒業 論文を作成します。さらに、多くの学生が大学 院(修士・博士)に進学します。

コア教育プログラム 各コースで実施する専門教育 教養教育科目 コース基礎科目、コース専門科目 修士課程 社会中核人材育成プログラム (選択) リーダー育成科目、地域志向科目など 専門教育 共通基礎科目·共通専門科目 工学概論、数学・理科の基礎科目、インターンシップなど 3年 4年 1年

取得可能な 免許·資格

全コース: ●高等学校教諭1種免許状(工業)

電気電子工学コース: ●電気主任技術者 ●電気通信主任技術者 ●陸上及び海上無線技術士など

知能情報工学コース: ●情報処理技術者全般 ●応用情報技術者など

機械工学コース: ●技術士 ●ボイラー技士 ●危険物取扱者など

生命工学コース: ●衛生工学衛生管理者 ●毒物劇物取扱責任者 ●危険物取扱者など

応用化学コース: ●危険物取扱者 ●毒物劇物取扱責任者など

主な就職先 〈2020年度卒業者〉

- ●インテック ●エーザイ ●大塚製薬 ●関西電力 ●キヤノン ●小林製薬 ●セイコーエプソン ●セガ ●セーレン ●ダイト 中外製薬工業 ●TDK ●デンソー ●東海旅客鉄道 ●東和薬品 ●富山県警察 ●トヨタ自動車 ●日医工 ●日産化学 ●PFU
- ●FANUC 不二越 ●北陸電力 ●三菱電機 ●メニコン ●LINE ●ルネサスエレクトロニクス ●YKK

「主な進学先〕

富山大学大学院、北海道大学大学院、東北大学大学院、東京工業大学大学院、東京農工大学大学院、金沢大学大学院、 北陸先端科学技術大学院大学、京都大学大学院、大阪大学大学院、奈良先端科学技術大学院大学、九州大学大学院、 九州工業大学大学院